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Mathematics and Music:
Relating Science to Arts?

MICHAEL BEER

1. Introduction

For many people, mathematics is an enigma. Characterised by the impression of numbers and
calculations taught at school, it is often accompanied by feelings of rejection and disinterest,
and it is believed to be strictly rational, abstract, cold, and soulless.

Music, on the other hand, has something to do with emotion, with feelings, and with life. It
is present in all daily routines. Everyone has sung a song, pressed a key on a piano, blown into
a flute, and therefore, in some sense, made music. It is something people can interact with, it
is a way of expression and a part of everyone’s existence.

The motivation for investigating the connections between these two apparent opposites
therefore is not very obvious, and it is unclear in what aspects of both topics such a relationship
could be sought. Moreover, even if some mathematical aspects in music such as rhythm
and pitch are accepted, it is far more difficult to imagine any musicality in mathematics. The
countability and the strong order of mathematics do not seem to coincide with an artistic pattern.

However, there are different aspects which indicate this sort of relationship. Firstly, research
has proved that children playing the piano often show improved reasoning skills like those
applied in solving jigsaw puzzles, playing chess, or conducting mathematical deductions (see
reference 1, p. 17). Secondly, it was noticed in a particular investigation that the percentage of
undergraduate students having taken a music course was about eleven percent above average
amongst mathematics majors (see reference 2, p. 18). This affinity of mathematicians for music
is not only a recent phenomenon, but has been mentioned previously by Bloch in 1925 (see
reference 3, p. 183).

This article examines the relationship between mathematics and music from three different
points of view. The first describes some ideas about harmony, tones, and tunings generated by the
ancient Greeks, the second shows examples of mathematical patterns in musical compositions,
and the last illuminates artistic attributes of mathematics.

Itis not the intention of this article to provide a complete overview of the complex connections
between these two subjects. Neither is it to give detailed explanations and reasons for the cited
aspects. However, this assignment will show that mathematics and music do not form such
strong opposites as they are commonly considered to do, but that there are connections and
similarities between them, which may explain why some musicians like mathematics and why
mathematicians frequently love music.

2. Tone and tuning: the Pythagorean perception of music

In the time of the ancient Greeks, mathematics and music were strongly connected. Music
was considered as a strictly mathematical discipline, handling number relationships, ratios, and
proportions. In the quadrivium (the curriculum of the Pythagorean School) music was placed
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Figure 1 The quadrivium (see reference 4, p. 64).

on the same level as arithmetic, geometry, and astronomy (see figure 1). This interpretation
totally neglected the creative aspects of musical performance. Music was the science of sound
and harmony.

The basic notions in this context were those of consonance and dissonance. People had
noticed very early on that two different notes do not always sound pleasant (consonant) when
played together. Moreover, the ancient Greeks discovered that to a note with a given frequency
only those other notes whose frequencies were integer multiples of the first could be properly
combined. If, for example, a note of the frequency 220 Hz was played, the notes of frequencies
440Hz, 660 Hz, 880 Hz, 1100 Hz, and so on, sounded best when played together with the first.

Furthermore, examinations of different sounds showed that these integer multiples of the
base frequency always appear in a weak intensity when the basic note is played. If a string
whose length defines a frequency of 220 Hz is vibrating, the generated sound also contains
components of the frequencies 440 Hz, 660 Hz, 880 Hz, 1100 Hz, and so on. Whereas the
listeners perceive mainly the basic note, the intensities of these so-called overtones define the
character of an instrument. It is primarily due to this phenomenon that a violin and a trumpet do
not sound similar even if they play the same note. (The respective intensities of the overtones
are expressed by the Fourier coefficients when analysing a single note played. This concept,
however, will not be explained within the scope of this article.)

The most important frequency ratio is 1:2, which is called an octave in the Western system
of music notation. Two different notes in such a relation are often considered as principally
the same (and are therefore given the same name), only varying in their pitch but not in their
character. The Greeks saw in the octave a ‘cyclic identity’. The following ratios build the
musical fifth (2:3), fourth (3:4), major third (4:5), and minor third (5:6), which all have
their importance in the creation of chords. The difference between a fifth and a fourth was
defined as a ‘whole’ tone, which results in a ratio of 8:9. These ratios correspond not only
to the sounding frequencies but also to the relative string lengths, which made it easy to find
consonant notes starting from a base frequency. Shortening a string to two thirds of its length
creates the musical interval of a fifth for example.

All these studies of ‘harmonic’ ratios and proportions were the essence of music during
Pythagorean times. This perception, however, lost its importance at the end of the Middle
Ages, when more complex music was developed. Despite the ‘perfect’ ratios, there occurred
new dissonances when particular chords, different keys, or a greater scale of notes were used.
The explanation for this phenomenon was the incommensurability of thirds, fifths, and octaves
when defined by integer ratios. By adding several intervals of these types to a base note, we never
reach an octave of the base note again. In other words, an octave (1:2) cannot be subdivided
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into a finite number of equal intervals of this Pythagorean type (x: x +1 | x being an integer) .
Adding whole tones defined by the ratio 9:8 to a base note with the frequency f, for example,
never creates a new note with the frequency 2 f, 3f, 4f, or similar. However, adding six
whole tones to a note almost creates its first octave defined by the following double frequency:

(2)°f ~2.0273f > 2f.

The amount six whole tones overpass an octave is called the ‘Pythagorean comma’:

6
_) =1.0136432....
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Considering these characteristics of the Pythagorean intervals, the need for another tuning
system developed. Several attempts were made, but only one has survived until nowadays:
the system of dividing an octave into twelve equal (‘even-tempered’) semi-tones introduced
by Johann Sebastian Bach. Founding on the ratio 1:2 for octaves, all the other Pythagorean
intervals were slightly tempered (adjusted) in order to fit into this new pattern. A whole tone no
longer was defined by the ratio 9/8 = 1.125, but by two semi-tones (each expressed by V2)
obtaining the numerical value ¥/2 ¥/2 = /2 ~ 1.1225. The even-tempered fifth then was
defined by seven semi-tones and therefore slightly smaller than the Pythagorean fifth, the fourth
by five semi-tones and therefore slightly bigger than the Pythagorean fourth.

The controversy within this tempering process is that the human ear still prefers the ‘pure’
Pythagorean intervals, whereas a tempered scale is necessary for complex chordal music.
Musicians nowadays have to cope with these slight dissonances in order to tune an instrument
so that it fits into this even-tempered pattern.

With the evolution of this more complicated mathematical model for tuning an instrument,
and with the increased importance of musicality and performance, music and mathematics in
this aspect have lost the close relationship known in ancient Greek times. As an even-tempered
interval could no longer be expressed as a ratio ( ~/2 is an irrational number), the musicians
learnt to tune an instrument by training their ear rather than by applying mathematical principles.
Music from this point of view released itself from mathematical domination; see references 4
(pp. 36-67), 5, 6 (pp. 3-5), and 7 (Chapter 1, pp. 13-27).

3. Mathematical music: Fibonacci numbers and the golden section in
musical compositions

The questions of tone and tuning are one aspect in which mathematical thoughts enter the world
of music. However, music — at least in a modern perception — does not only consist of notes
and harmony. More important are the changes of notes in relation to time, that is the aspect
of rhythm and melody. Here again mathematical concepts are omnipresent. Not only is the
symbolic musical notation in all its aspects very mathematical, but also particular arithmetic and
geometric reflections can be found in musical compositions, as will be seen in the following
paragraphs. (This article is not going to deal with highly sophisticated mathematical music
theories as established by Xenakis (see reference 8) or Mazzola (see references 9 and 10) for
example, based on an algebraic composition model or on group and topos theories respectively.
These two concepts would exceed this overview of the relations between mathematics and
music.)
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A very interesting aspect of mathematical concepts in musical compositions is the appearance
of Fibonacci numbers and the theory of the golden section. The former is an infinite sequence
of integers named after Leonardo de Pisa (alias Fibonacci), a medieval mathematician. Its first
two members are both 1, whereas every new member of the sequence is formed by the addition
of the two preceding numbers, giving 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89.... However, their
most important feature in this context is that the sequence of Fibonacci ratios (that is the ratio
of a Fibonacci number with its larger adjacent number) converges to a constant limit, called the
golden ratio, golden proportion, or golden section, i.e. 0.61803398. ...

More common is the geometric interpretation of the golden section: a division of a line into
two unequal parts is called ‘golden’ if the relation of the length of the whole line to the length
of the bigger part is the same as the relation of the length of the bigger part to the length of
the smaller part. This proportion cannot only be found in geometric forms (for example the
length of a diagonal related to the length of an edge in a regular pentagon), but also in nature
(for example the length of the trunk in relation to the diameter of the tree for some particular
trees, such as the Norway spruce; see reference 4, p. 113).

Due to its consideration as well-balanced, beautiful, and dynamic, the golden section
has found various applications in the arts, especially in painting and photography, where
important elements often divide a picture’s length or width (or both) following the golden
proportion. However, such a division is not necessarily undertaken consciously, but results
from an impression of beauty and harmony.

Diverse studies have discovered that this same concept is also very common in musical
compositions. The golden section — expressed by Fibonacci ratios — is either used to generate
rhythmic changes or to develop a melody line (see reference 4, p. 116). Examples of deliberate
applications can be found in the widely used ‘Schillinger System of Musical Composition’ or
concretely in the first movement of Béla Bart6k’s piece ‘Music for Strings, Percussion and
Celeste’, where, for instance, the climax is situated at bar 55 of 89 (see reference 11).

Furthermore, Rothwell’s study (see reference 12) has revealed examples of the golden
proportion in various musical periods. While the characteristics of the examined compositions
varied greatly, the importance of proportional organisation was mostly similar. Important
structural locations, marked by melodic, rhythmic, or dynamic events, were often discovered
to divide the composition in two parts, either symmetrically or in the golden proportion.

A well-known example is the ‘Hallelujah’ chorus in Handel’s Messiah. Whereas the whole
consists of 94 measures, one of the most important events (entrance of solo trumpets: ‘King of
Kings’) happens in measures 57 to 58, after about % (1) of the whole piece. In addition to that,
we can find a similar structure in both of the divisions of the whole piece. After % of the first
57 measures, that is in measure 34, the entrance of the theme ‘The kingdom of glory. . .” marks
another essential point; and after % of the second 37 measures, in measure 79 (‘And he shall
reign..."), again, the importance of the location is enforced by the appearance of solo trumpets
(see reference 12, p. 89). It is hard to say whether Handel chose these locations deliberately,
but at least this phenomenon outlines the importance of the golden section not only in visual
but also in performing arts.

Another study (see reference 13, pp. 118—119) has shown that in almost all of Mozart’s piano
sonatas, the relation between the exposition and the development and recapitulation conforms
to the golden proportion. Here, again, we cannot ascertain whether Mozart was conscious of
his application of the golden section, even though some evidence suggests his attraction to
mathematics.
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It is probably less important to evaluate whether people consider mathematics when they
apply or perceive a golden proportion than to notice that harmony and beauty — at least in this
aspect — can be expressed by mathematical means. Fibonacci ratios in relation to the division
of a composition, as well as integer ratios in relation to Pythagorean intervals, are examples of
the fact that harmony can sometimes be described by numbers (even by integers) and therefore
has a very mathematical aspect. This could be one way to introduce an additional idea: that
beauty is inherent in mathematics.

4. Musical mathematics: reflections on an artistic aspect of mathematics

All these aspects of mathematical patterns in sound, harmony, and composition do not convinc-
ingly explain the outstanding affinity of mathematicians for music. Being a mathematician does
not mean discovering numbers everywhere and enjoying only issues with strong mathematical
connotations. The essential relation is therefore presumed to be found on another level.

It is noticeable that the above-mentioned affinity is not reciprocated. Musicians do not
usually show the same interest for mathematics as mathematicians for music. We therefore
must suppose that the decisive aspect cannot lie in arithmetic, the part of mathematics people
sometimes consider to be in fact the whole subject. It is probably more the area of mathematical
thinking, mind-setting, and problem-solving which creates these connections.

An example given by both Henle (see reference 2, p. 19) and Reid (see reference 5) is
the omnipresence of words such as beauty, harmony, and elegance in mathematical research.
Whereas musicians sometimes develop a particularly well-formed melody or apply an outstand-
ing harmony, mathematicians often seek ‘simple’ and elegant proofs. Moreover, the sensations
in solving a mathematical problem seem to be similar to those appearing when performing a
musical work. Most important is the creative aspect, which lies within both of these disciplines.

Interesting evidence for this idea has been presented by Henle (see reference 2, p. 19), who
compared the history of music with the history of mathematics based on the following three
main arguments.

1. Mathematics has many of the characteristics of an art.

2. Viewed as an art, it is possible to identify artistic periods in mathematics: Renaissance,
Baroque, Classical, and Romantic.

3. These periods coincide nicely and share many characteristics with the corresponding
musical epochs, but are significantly different from those of painting and literature.

Relating to concepts such as dualism (Baroque), universality (Classical), and eternity (Roman-
tic), Henle drew out surprising similarities between the evolution of mathematics and music.

Moreover, Henle outlined the necessity of a change in mathematical education towards a
more musical style (see reference 2, p. 28).

Students should make mathematics together (as in fact professional mathemati-
cians do), not alone. [...] And finally, students should perform mathematics; they
should sing mathematics and dance mathematics.

This would probably help people understand what mathematics really is, namely not divine,
but mortal, and not law, but taste.

In spite of the highly speculative aspect within such ideas, this is probably the fundamental
point of view when seeking connections between mathematics and music. It is the musicality
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in the mathematical way of thinking that attracts mathematicians to music. This, however, is
difficult for people who are not familiar with this particular pattern of mind to comprehend.
It is therefore probable — as has been stated by Reid (see reference 5) — that the degree
of understanding such relationships is proportional to the observer’s understanding of both
mathematics and music. (In this context, we should mention some ideas of Hofstadter (see
reference 14), who linked the music of J. S. Bach, the graphic art of Escher, and the mathematical
theorems of Gdodel in order to illuminate the nature of human thought processes. Once more,
however, this would go beyond the framework of this article.)

5. Conclusion

This article has outlined three different approaches to the question of how mathematics and
music relate to each other. The first showed the particular perception of music by the ancient
Greeks, putting less importance on melody and movement than on tone, tuning, and static
harmony. In the second, the concept of the golden section was brought into relation with
number ratios and their occurrence in diverse compositions. The most fundamental approach,
however, was the third, in which connections were revealed concerning the artistic aspect of
the mathematical way of thinking.

It is obvious that these are only examples for investigating such a relationship and that other
comparisons could be attempted (apart from those already mentioned). However, these three
approaches represent probably the most often discussed concepts and ideas and are particularly
suitable for providing a first impression of this topic.

Whatever links between music and mathematics exist, both of them are obviously still very
different disciplines, and we should not try to impose one on the other. It would be wrong
to attempt to explain all the shapes of music by mathematical means, just as there would be
no sense in studying mathematics from a musicological point of view. However, it would be
enriching if these relationships were introduced into mathematical education in order to release
mathematics from its often too serious connotations.

It is important to show people that mathematics, in one way, is as much an art as it is a
science. This probably would alter its common perception, and people would understand better
its essence and its universality.
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Letters to the Editor

Dear Editor,
Regular polygons

I enjoyed reading about Daniel Schultz’s interesting discovery in Volume 40, Number 2,
p. 84. A short, albeit rather mechanical, proof of his general result can be given using complex
numbers.

Put O, the centre of the regular n -sided polygon, at the origin and take its vertices to be (Px),
represented by the complex numbers O Py = zx = R, where w = cos(2r/n) +isin(2m/n)
and, as usual, P,4+; = Pj. If the fixed point in the plane of the polygon is denoted by P
with O P = z, then A/, the foot of the perpendicular from P to side Py Py, is of the form
OAZ = Zk + A(Zk+1 — zx) with the real number A characterised by the fact that

2k + M2k — 2) — 2
k — Tk+1

is purely imaginary. Thus,

Tk + M2kl — ) — 2 . e+ AMZrp1 — ) — 2

—— 0
2k — Zk+1 Tk — Zk+1

which, on solving for A and substituting zx = Rw*, leads eventually to the expression
0A; = Lz — 126 4 LRoF + LR,
Since Y }_; o* =0 =Y7_, ®**1, it follows that
! 2": OA} = lz
n = k= a®

which proves David Wells’ observation in Daniel’s letter.





